isocline - significado y definición. Qué es isocline
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es isocline - definición

ISOLINE
Isoclinal; Isoclinal Plane; Isoclinal Line; Isoclinic Groups

Isoclinal         
·adj ·Alt. of Isoclinic.
isoclinal         
[???s?(?)'kl??n(?)l]
¦ adjective Geology denoting a fold in which the two limbs are parallel.
Origin
C19: from iso- + Gk klinein 'to lean' + -al.
Isocline Hill         
HILL IN ANTARCTICA
Isocline Hill () is a hill in the southern part of the Augen Bluffs, in the Miller Range, Antarctica. The hill rises above the west side of Marsh Glacier and is connected to the Augen Bluffs by a col lower than the height of the hill.

Wikipedia

Isocline

Given a family of curves, assumed to be differentiable, an isocline for that family is formed by the set of points at which some member of the family attains a given slope. The word comes from the Greek words ἴσος (isos), meaning "same", and the κλίνειν, meaning "make to slope". Generally, an isocline will itself have the shape of a curve or the union of a small number of curves.

Isoclines are often used as a graphical method of solving ordinary differential equations. In an equation of the form y' = f(x, y), the isoclines are lines in the (x, y) plane obtained by setting f(x, y) equal to a constant. This gives a series of lines (for different constants) along which the solution curves have the same gradient. By calculating this gradient for each isocline, the slope field can be visualised; making it relatively easy to sketch approximate solution curves; as in fig. 1.